Coupled points in ordered generalized metric spaces and application to integro-differential equations
نویسندگان
چکیده
In this paper, we prove some coupled fixed point theorems for Ocompatible mappings in partially ordered generalized metric spaces under certain conditions to extend and complement the recent fixed point theorems due to Bhaskar and Lakshmikantham [Nonlinear Anal. TMA 65 (2006) 1379 1393] and Berinde [Nonlinear Anal. TMA 74 (2011) 7347-7355]. We give some examples to illustrate our results. An application to integro-differential equations is also given.
منابع مشابه
Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملFUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملCoupled fixed point on ordered cone metric spaces with application in integral equations
Our theorems are on ordered cone metric spaces which are not necessarily normal. In the end, we describe the application of the main results in the integral equation.Although Du in [W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis, 72(2010) 2259-2261.], showed that the fixed point results in the setting of cone...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملFixed point theorems on generalized $c$-distance in ordered cone $b$-metric spaces
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
متن کامل